M.SC. 'INFORMATICS ENGINEERING'

Department of Informatics Engineering HMU

Course title & identity

- Title: Distributed Systems and Applications
- Objective(s)
 - Distributed System Principles, Design and Models
 - Distributed System Requirements and Challenges
 - Distributed Algorithms
 - Information Exchange
 - Coordination
- Members of staff
 - Assistant Prof. Harris Papadakis

Approach

- Three (3) hours lectures: (YES/NO)
- Laboratory classes: (YES/NO)
- Project
 - 1 programming assignment (groups of 2)
- Mid-semester assessment (YES/NO)
- Final assessment (YES/NO)
- Grade: FA*0.6+P*0.4

Lecture topics/structure

- Introduction
 - Types of Distributed Systems
 - Comparison with related systems
 - Parallel Processing
 - Grid computing
 - Cluster computing
 - Basic Design Principles Goals
 - Transparency
 - Openess-Interoperability
 - Scalability
 - Robustness
 - Concepts of Distributed Operating Systems
 - Middleware

Lecture topics/structure

- Distributed Systems Models
 - Communication Models
 - Client/Server
 - P2P Paradigm
 - Unstructured
 - Structured
 - Distributed Systems Models
 - Synchronous Systems
 - Asynchronous Systems
- Basic Distributed Algorithms
 - Broadcasting
 - Convergence
 - Leader Election

Lecture topics/structure

- Causality
 - Logical Clocks
 - Vector Clocks
- Message Ordering
 - FIFO
 - Casual
 - Total
- Fault Tolerance
 - Crash
 - Byzantine
- Transactions
- Introduction to Clouds
 - Amazon EC2
 - Google Map/Reduce

Semester Project

- Design and Implementation of a scalable, fault-tolerant Distributed System
 - Examples:
 - Shared document editing
 - Memcache implementation using DHTs
 - Range queries over DHTs
 - P2P chatting
 - Blockchain document storage
 - Students are encouraged to propose additional projects

Specific details

- Technologies/Tools
 - C or Java programming language or any other
- Indicate type of learning materials
 - Distributed Systems: Principles and Paradigms, Andrew S. Tanenbaum, Maarten van Steen, Publisher: Prentice Hall (2003), ISBN: 0131217860
 - Course handouts with lecture slides

Specific details

- Specify expected outcomes
 - The students will be able to:
 - Understand the design and operational requirements of Distributed Systems
 - Understand the Design Models of Distributed Systems
 - Deep knowledge of basic and advanced Distributed Algorithms
 - Be able to design efficient Distributed Algorithms
 - Knowledge of main algorithms for specific problems

Applicant profile

- Pre-requisites and Skills
 - undergraduate courses in programming and algorithms would be of great help
 - C or Java or other programming language skills
- Expected weekly workload
 - Lecture Attendance
 - Work on projects will span the entire semester